# Currency Data, Efficient Markets and Influx DB

This post is about processing currency data which I have been collecting since the end of 2014. The data is collected once every hour from Monday 12am till Friday 11pm.

The data-set itself is not large as the frequency of collection is low, but it does cover lots of interesting world events such as Nigerian currency devaluation, Brexit, Trump Presidency, BJP Government in India, EU financial crisis, Demonetisation in India etc.

The image below shows the percentage change histogram for three common currencies (GBP – British Pound, USD – US Dollar and INR – Indian Rupee). The value for Percentage Change (X-Axis) is between -4% and 2%

What is immediately clear is the so called ‘fat-tail’ configuration. The data is highly skewed and shows clear features of ‘power law’ statistics. In other words the percentage change is related to frequency by an inverse power law. Larger changes (up or down) are rarer than small changes but not impossible (with respect to other distributions such as the Normal Distribution).

The discontinuity around Percentage Change = 0% is intentional. We do not want very small changes to be included as these would ‘drown out’ medium and large changes.

We can use the R code snippet below to draw 100 samples with replacement from  the movement data (combined across all currencies) and calculate the sample mean. The sample means can be plotted on a histogram which should give us the familiar Normal Distribution [this is the ‘Central Limit Theorem’ in action]. The sample mean that is most common is 0% – which is not an unexpected result given the presence of positive and negative  change percentages.

[codesyntax lang=”javascript”]

```mean_curr_movement <- replicate(1000, {
mean__curr_movement<-mean(
sample(data\$Percent.Change,100,replace = TRUE)
)
}
)```

[/codesyntax]

Compare this with a Normal distribution where, as we move away from the mean, the probability of occurrence reduces super-exponentially making large changes almost impossible (also a super-exponential quantity reduces a lot faster than a square or a cube).

Equilibrium Theory (or so called Efficient Market Hypothesis) would have us believe that the market can be modelled using a Bell Curve (Normal Distribution) where things might deviate from the ‘mean’ but rarely by a large amount and in the end it always converges back to the ‘equilibrium’ condition. Unfortunately with the reality of power-law we cannot sleep so soundly because a different definition of rare is applicable there.

Incidentally earthquakes follow a similar power law with respect to magnitude. This means that while powerful quakes are less frequent than milder ones they are still far from non-existent.

Another magical quality of such systems is that fluctuations and stability often come in clusters. The image below show the percentage movement over the full two years (approx.). We see a relative period of calm (green area) bracketed by periods of high volatility (red areas).